
This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A Carbon-13 NMR Study of the Structure of 9-Acridanone and 9-Thioacridanone in Neutral and Acidic Media

R. Faure^a; J. P. Galy^a; E. J. Vincent^a; A. M. Galy^b; J. Barbe^b; J. Elguero^c

^a Laboratoire de Chimie organique physique, Université d'Aix-Marseille III, Marseille Cedex, France

^b Laboratoire de Chimie minérale, Faculté de Pharmacie, Marseille Cedex, France ^c Instituto de Química Médica, Madrid, Spain

To cite this Article Faure, R. , Galy, J. P. , Vincent, E. J. , Galy, A. M. , Barbe, J. and Elguero, J.(1983) 'A Carbon-13 NMR Study of the Structure of 9-Acridanone and 9-Thioacridanone in Neutral and Acidic Media', *Spectroscopy Letters*, 16: 6, 431 — 439

To link to this Article: DOI: 10.1080/00387018308062362

URL: <http://dx.doi.org/10.1080/00387018308062362>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A CARBON-13 NMR STUDY OF THE STRUCTURE OF
9-ACRIDANONE AND 9-THIOACRIDANONE IN NEUTRAL
AND ACIDIC MEDIA

KEY WORDS: ^{13}C NMR, Tautomerism, Protonation

R. Faure, J.P. Galy and E.J. Vincent

Laboratoire de Chimie organique physique, Université d'Aix-Marseille III, Rue Henri-Poincaré, 13397 Marseille Cedex 13 France

A.M. Galy and J. Barbe

Laboratoire de Chimie minérale, Faculté de Pharmacie, 13385 Marseille Cedex 5, France

J. Elguero

Instituto de Química Médica, Juan de la Cierva 3, Madrid-6 Spain

INTRODUCTION

The antimicrobial and antiparasitic properties of acridine derivatives are known for a long time¹; more recently their anticancer activity has been reported². Amongst the acridines, the derivatives of 9-acridanone¹ and of 9-thioacridanone² have interesting properties³. Since these compounds show a problem of tautomerism⁴, it would be important to study their behaviour in order to understand the activity of acridanones and thioacrid-

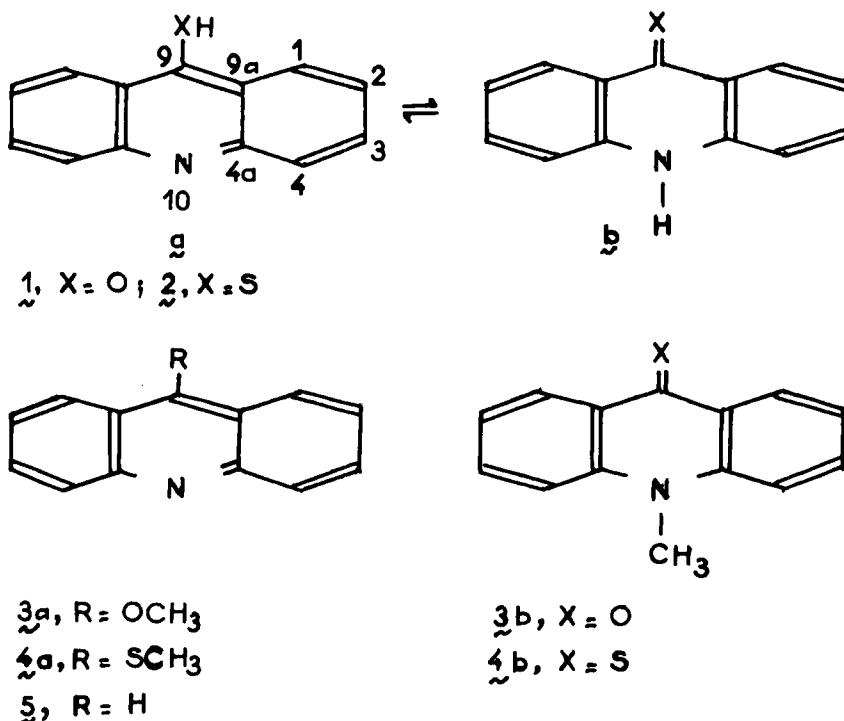


Figure 1

danones in media of different acidity. The present publication deals with the study, by means of ^{13}C NMR, of the structure of compounds $\tilde{1}$ and $\tilde{2}$ (Figure 1) in DMSO-d_6 and in trifluoroacetic acid. Five other derivatives, $\tilde{3}$ to $\tilde{5}$ (Figure 1), used as model compounds, were also studied in these conditions.

EXPERIMENTAL

The ^{13}C NMR spectra were recorded at 20.0 MHz in the FT-mode on a Varian FT-80A spectrometer. Typical experimental conditions are: sweep width, 5000 Hz; pulse width, 8 μs (45°); acquisition time, 0.8 s; data points, 8192;

temperature, $28 \pm 2^\circ\text{C}$. Because of the low solubility of the N-methyl 9-thioacridanone $\tilde{4b}$ in DMSO-d_6 its ^{13}C NMR spectrum has been recorded at 50.3 MHz on a Brucker WP 200SY spectrometer.

In DMSO-d_6 solutions, the chemical shifts were measured in the noise decoupled mode with respect to the central line of the solvent and referred to the TMS signal by the relationship⁵: $\delta_{\text{TMS}} = \delta_{\text{DMSO-d}_6} + 39.6$ (δ in ppm). In the case of trifluoroacetic acid solutions, field/frequency control was effected by means of the deuterium resonance of DMSO-d_6 placed in an internal capillary tube; chemical shifts were then determined with respect to TMS as an internal standard. The accuracy of the chemical shifts is better than 0.1 ppm.

The samples used in this study were either commercial products (1,5) or products prepared by conventional methods (2⁶, 3a⁷, 3b⁸, 4a⁹ and 4b¹⁰).

RESULTS AND DISCUSSION

Physicochemical studies^{14,15} conclude that the hydroxy tautomer $\tilde{1a}$ is not present at the equilibrium in the case of 9-acridanone $\tilde{1}$, even in non polar solvents¹⁶ (see also⁴). This result allows the determination of the effects produced by the N-methylation, by comparison of the chemical shifts of 9-acridanone derivatives $\tilde{1b}$ and $\tilde{3b}$ (Figure 2).

In turn, these SCS can be used to calculate the chemical shifts on the 9-thioacridanone tautomer $\tilde{2b}$ from the values of the N-methyl derivative $\tilde{4b}$ (Figure 3). Unfortunately, the absence of results concerning the S-methylation either in napthalene and anthracene derivatives¹⁷ prevent the calculation of the chemical shifts of the thiol tautomer $\tilde{2a}$ from the values of the S-methyl derivative $\tilde{4a}$.

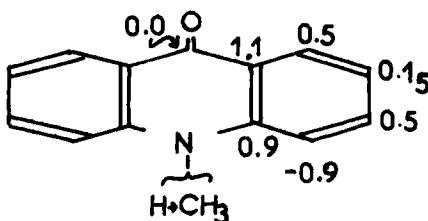


Figure 2. Substituent chemical shifts (SCS) produced by the N-methylation

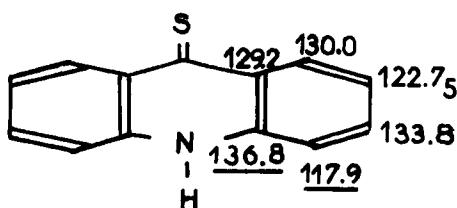


Figure 3. Calculated chemical shifts of the thione tautomer $\tilde{2b}$

However, an estimation of the equilibrium constant $\tilde{2a} \rightleftharpoons \tilde{2b}$ is possible from the ^{13}C NMR data of carbons C-4 and C-4a (underlined in Figure 3). The reason is that firstly, the chemical shifts of these carbons must be very similar in structures $\tilde{2a}$ and $\tilde{4a}$, secondly, they must be very sensitive to the tautomeric change, being near the nitrogen atom N-10. Since the precision on the tautomeric constant is related to the value of the difference between the chemical shifts of the two forms in equilibrium¹⁸, the preceding choice of carbon seems reasonable ($\Delta\delta$ about 12 ppm). A simple interpolation affords a value of 15 • 5% of tautomer $\tilde{2a}$ at the equilibrium. Literature results (UV and IR comparisons)^{4,19} only conclude to the predominance of the thione form $\tilde{2b}$.

Table 1. ^{13}C Chemical shifts^a

Compound	Solvent	C-1	C-2	C-3	C-4	C-9	C-4a	C-9a	CH ₃
1	DMSO-d ₆ ^b	126.0	121.05	133.5	117.4	176.8	140.9	120.5	
	TFAA	128.3 (2.3)	125.6 (4.55)	139.65 (6.15)	120.35 (2.95)	170.9 (-5.9)	142.6 (1.7)	116.7 (-3.8)	
2	DMSO-d ₆	129.9	122.6	132.8	120.2	192.9	138.0	129.5	
	TFAA	127.6 (-2.3)	130.4 (7.8)	140.0 (7.2)	121.8 (1.6)	165.8 (-27.1)	139.1 (1.1)	125.2 (-4.3)	
3a	DMSO-d ₆ ^c	122.4	125.5	130.6	129.4	161.25	149.95	119.6	64.3
	TFAA	126.4	128.9	139.8	120.9	174.8	143.4	120.6	67.8
3b	DMSO-d ₆ ^b	126.5	121.2	134.0	116.5	176.8	141.8	121.6	33.7
	TFAA	127.7	126.75	140.3	118.6	170.8	144.3	117.5	37.2
4b	DMSO-d ₆ ^d	127.2	126.4	130.5 ^e	130.1 ^e	146.15	148.3	127.7	20.1
	TFAA	129.5 (2.3)	130.25 (3.85)	139.8 (9.3)	121.4 (-8.7)	167.9 (21.75)	139.8 (-8.5)	129.5 (1.8)	22.7 (2.6)
5	DMSO-d ₆	130.5	122.9	134.3	117.0	(f)	137.7	130.3	35.1
	TFAA	128.9	129.7	140.75	119.7	166.3	141.2	125.95	38.9
5	DMSO-d ₆	128.5	125.8	130.5	128.9	-	(3.5)	(-4.35)	(3.8)
	TFAA	131.2 (2.7)	129.85 (4.05)	139.9 (9.4)	120.4 (-8.5)	136.1 (14.5)	148.5 (-7.8)	126.1 (1.25)	

^a $\Delta = \delta_{\text{TFAA}} - \delta_{\text{DMSO-d}_6}$; ^b values of the reference 11; ^c values of the reference 12;

^d values of the reference 13; ^e the assignments of these signals may be inverted;

^f signal not observed even in the presence of a relaxation reagent $[\text{Cr}(\text{acac})_3]$.

Study of the structures in acidic medium

Protonation shifts are gathered in Table 1. These values should be corrected taking into account solvation effects²⁰ of the DMSO-d₆/trifluoroacetic acid pair. However, in a first approximation it could be assumed that these effects would be the same for a series of related compounds.

Analysis of Table 1 data (Δ values) shows a great similitude in protonation effects of oxygenated derivatives $\tilde{1b}$ and $\tilde{3a}$. Likewise the comparison of the chemical shifts in trifluoroacetic acid proves that the protonation of 9-acridanones, $\tilde{1b}$ and $\tilde{3b}$, and of 9-methoxyacridine $\tilde{3a}$ leads to a cation having the same electronic structure (Figure 4).

The similitude of protonation effects (Δ values, Table 1) of compounds $\tilde{3a}$ and $\tilde{5}$ (acridine itself) strongly indicates that the positive charge is located in the acridine ring and not in the methoxy substituent, as in the canonical form represented in figure 4.

For sulfur derivatives a similar conclusion concerning the formation of a common cation can be drawn from the analysis of the chemical shifts in trifluoroacetic acid. However, considering the large effect on C-9 (Δ = 21.75 ppm) observed for the protonation of 9-thiometho-

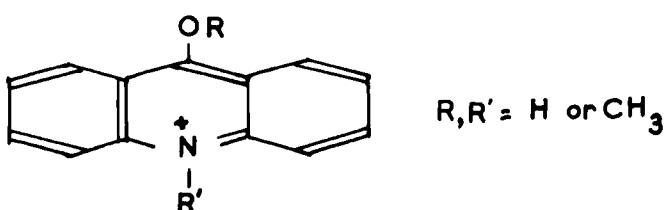


Figure 4. Structure of the cation obtained by protonation of 9-acridanones and 9-methoxyacridines

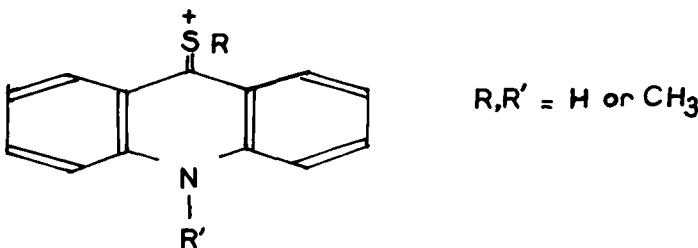


Figure 5. Structure of the cation obtained by protonation of 9-thioacridanones and 9-thiomethoxyacridines.

xyacridine 4a, a canonical form with the positive charge located on the sulfur atom must contributed largely to the resonance hybrid (Figure 5).

The Russian authors previously quoted¹⁶ have concluded that the cation has a 9-mercaptopoacridinium structure but a canonical form similar to that of figure 5 has been proposed²¹ to explain some effects in 4-thiomethoxy-quinoline.

ACKNOWLEDGMENTS

We would like to thank G. Hermann (Brucker Spectrospin) for recording a spectrum needed.

REFERENCES

- 1) A. Albert, J. Med. Clin., 25, 1 (1982); A.D. Wolfe, Antibiotics, 3, 203 (1975).
- 2) B.F. Cain, G.J. Atwell and W.A. Denny, J. Med. Chem., 18, 1110 (1975); I.G.C. Robertson, W.A. Denny and B.C. Baguley, Europ. J. Cancer, 16, 1133 (1980).
- 3) J.L. Taylor, C.K. Schoenherr and S.E. Grossberg, Antimicrob. Agents Chemotherap., 18, 20 (1980); J.W. Schulenberg, Sterling Drug Inc., USP 4,244,954 (January, 13, 1981); Chem. abstr., 94, 208727 (1981);

M. Hrabowska, A. Ledochowski, B. Wisocka-Skrzela, K. Onoszko and J. Paradziej-Lukowicz, *Archiv. Immunol. Therap. Exptl.*, 29, 205 (1981).

4) J. Elguero, C. Marzin, A.R. Katritzky and P. Linda, "The Tautomerism of Heterocycles" Academic Press, New-York, pp 115 and 145 (1976).

5) G.C. Levy and G.L. Nelson, "¹³C NMR for Organic Chemists" Wiley-Interscience, New-York (1972).

6) A. Edinger and W. Arnold, *J. Prakt. Chem.*, 64, 182 (1901); R.R. Smolders, J. Hanuise, R. Coomans, V. Proietto, N. Voglet and A. Waefelaer, *Synthesis*, 493 (1982).

7) K. Lehmkedt, *Chem. Ber.*, 68, 1455 (1935).

8) J.P. Galy, J. Elguero, E.J. Vincent, A.M. Galy and J. Barbe, *Synthesis*, 944 (1979).

9) J.P. Galy, E.J. Vincent, A.M. Galy, J. Barbe and J. Elguero, *Bull. Soc. Chim. Belges*, 90, 947 (1981).

10) J. Joeken and M.A. de Ramaix, *Gevaert, Ger. Offen.*, 1,146,751 (april, 4, 1963); *Chem. abstr.*, 59, 15421 (1963).

11) R. Faure, A. Mahamoud, J.P. Galy, E.J. Vincent, A.M. Galy and J. Barbe, *Spectrosc. Lett.*, 14, 223 (1981).

12) R. Faure, J.P. Galy, E.J. Vincent, J. Elguero, A.M. Galy and J. Barbe, *Chem. Scripta*, 15, 62 (1980).

13) R. Faure, J.P. Galy, A. Mahamoud, E.J. Vincent, A.M. Galy and J. Barbe, *Org. Magnet. Reson.*, 21, 36 (1983).

14) A. Albert and R. Goldacre, *J. Chem. Soc.*, 454 (1943).

15) A. Albert and J.N. Phillips, *J. Chem. Soc.*, 1294 (1956).

16) A.J. Gurevich and Yu. N. Sheinker, *Zh. Fiz. Khim.*, 33, 883 (1959).

17) P.E. Hansen, *Org. Magnet. Reson.*, 12, 109 (1979).

18) L. Stefaniak, *Tetrahedron*, 32, 1065 (1976); R. Faure, E.J. Vincent, G. Assef, J. Kister and J. Metzger, *Org. Magnet. Reson.*, 9, 688 (1977); G. Vernin, C. Siv,

L. Bouscasse, J. Metzger, R. Faure, E.J. Vincent and
C. Parkanyi, *Org. Magnet Reson.*, 14, 235 (1980).

19) V.P. Maksimets and O.N. Popilin, *Khim. Geterotsikl. Soedin.*, 191 (1970).

20) R. Faure, J. Llinares and J. Elguero, *unpublished results.*

21) T. Zuika, Z. Bruvers and M. Circule, *Khim. Geterotsikl. Soedin.*, 663 (1980).

Received: March 18, 1983

Accepted: May 1, 1983